
USAMRD/TR-2006-0001

The Probitfit Program to Analyze Data from
Laser Damage Threshold Studies

Brian J. Lund

Northrop Grumman Corporation
4241 Woodcock Drive, B-100

San Antonio, Texas 78228

United States Army Medical Detachment
Walter Reed Army Institute of Research

7965 Dave Erwin Drive
Brooks City-Base, Texas 78235

DISTRIBUTION STATEMENT A
Approved for Public Release

May 2006 Distribution Unlimited

20060828027
Walter Reed Army Institute of Research

Silver Spring, Maryland 20910

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

May 2006 Final Dec 2005 - May 2006
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

The ProbitFit Program to Analyze Data from Laser Damage Threshold Studies F41624-02-D-7003

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

62787

6. AUTHOR(S) 5d. PROJECT NUMBER

Lund, Brian J. A878

5e. TASK NUMBER

878AA

5f. WORK UNIT NUMBER

N/A

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Northrop Grumman Corporation REPORT NUMBER

4241 Woodcock Dr., Suite B-100
San Antonio, TX 78228

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

US Army Medical Research Detachment USAMRD-WRAIR/MCMR-UWB
Walter Reed Army Institute of Research
7965 Dave Erwin Drive 11. SPONSOR/MONITOR'S REPORT
Brooks City-Base, TX 78235 NUMBER(S)

USAMRD/TR-2006-0001
12. DISTRIBUTION/AVAILABILITY STATEMENT

Unlimited Distribution

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The ProbitFit program has been developed at the US Army Medical Research Detachment to analyze dose-response data from laser
damage threshold experiments. ProbitFit expands on the capabilities of the Probit program, developed at the USAF Armstrong
Laboratory, while producing identical results when used to analyze the same data sets. ProbitFit implements the iterative probit
analysis procedure developed by Finney. Probit analysis and the fitting procedure used by ProbitFit is described. The source code
implementing the fitting routines as well as the procedures used to calculate the ED[P] values and associated fiducial limits are
contained in an appendix.

15. SUBJECT TERMS

probit analysis, threshold, ED50

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON

a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OF Brian Lund
PAGES

19b. TELEPHONE NUMBER (Include area code)
UUU3U (210) 536-4648

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Contents

Disclaimer iii

Acknowledgments iii

1 Introduction 1

2 Overview of Probit Analysis 1

2.1 Dose-Response Curve 1

2.2 Probit Transformation 2

2.3 Binomial Distribution and Exposures at a Single Dose 4

2.4 Damage Threshold Experiments and Probit Analysis 4

3 ProbitFit Fitting Procedure 5

3.1 Input ... 5

3.2 Iterative Fitting Procedure 6

3.3 Goodness of Fit, X2 . 6

4 Fiducial Limits 7

4.1 Uncertainties in the Fit 7

4.2 Fiducial Limits for the Probit Value 7

4.3 Fiducial Limits on the Dose .. 9

5 Comparison of the ProbitFit and Probit Programs 9

5.1 70 msec Pulse Data ... 9

5.2 3.5 nsec Pulse Data at 540 nm 10

5.3 1.33 pm corneal threshold data 12

6 Conclusion 12

References 13

A Selected Source Code Files 14

A.1 TrialDataltem.java ... 14

i

A.2 T~rialDatajava 15

A.3 DoseResponseDataltem .j ava 15

A.4 DoseResponseData~java. 16

A.5 ProbitFit.java 18

A.6 ProbitFitProcedure.java. 19

A.7 WorkingDataltemn.java 22

A.8 WorkingData~java. 23

A.9 FitProcedureOptions.java 24

A.10 EDEvaluator.java. 25

Al11 ED.java. 28

A.12 FiducialLimitOptions.java. 28

A. 13 Distributions.java. 29

A.14 Functions.java 30

List of Figures

1 Dose-response curve 2

2 Dose-response curve using linearize probit scale 4

3 Fiducial limits 8

4 ProbitFit fits to 70 msec pulsed data. 10

5 ProbitFit fits to 3.5 nsec pulse data at 540 rnm.. 11

6 ProbitFit fits to corneal threshold data at 1.33 m 12

List of Tables

1 Comparison of fits to 70 msec pulse data 10

2 Comparison of fits to 3.5 nsec pulse data at 540 nm 11

3 Comparison of fits 1.33 pm corneal threshold data. 12

Disclaimer

The opinions or assertions contained herein are the private views of the author and are not to be
construed as official or as reflecting the views of the Department of Defense, the Department of the
Army, or Northrop Grumman. Citation of trade names in this report does not constitute an official
endorsement or approval of the use of such items.

Acknowledgments

The author would like to thank Gary Noojin for a number of useful discussions during the devel-
opment of the ProbitFit program. Mr. Noojin also made the source code for the Probit program
available to the author.

This work was supported by the U.S. Army Medical Research Detachment through Task Order 15
of U.S. Air Force Contract F41624-02-D-7003 (Northrop Grumman). This work was conducted at
the U.S. Army Medical Research Detachment, Brooks City-Base, Texas.

iii

1 Introduction

Probit analysis is the primary statistical tool used to analyze dose-response data from laser retinal
damage threshold experiments. Beginning about 1970, the U.S. Army Medical Research Detachment
(USARMD) performed this analysis using small programs developed in-house and based on the
procedure described by Frisch [1]. Since 1996, USAMRD has been using computer programs that
have evolved from the original EZ-probit program developed by the U.S. Air Force Armstrong
Laboratory [2]. The current version of this program is Probit version 2.1.2.3. Although it has
undergone minor corrections and revisions, Probit has existed essentially in its current form since
1998.

The author has developed a new program, ProbitFit, as a replacement for Probit. The primary
enhancement offered by ProbitFit is an on-screen graph of the dose-response data, as well as the re-
sulting fits. In addition, a rudimentary data editor is included, allowing the researcher the capability
to rapidly explore several "what if" scenarios.

ProbitFit was written using the Java programming language, and therefore should run on any
operating system for which an appropriate Java Runtime Environment is available. Although based
on entirely new code, ProbitFit uses the same iterative fitting procedure developed by Finney [3]
that is used by Probit. Therefore, as a primary design goal, ProbitFit was required to reproduce
the results of Probit when used to process the same data set.

This report first provides a brief overview of probit analysis. The iterative routine used by ProbitFit
to fit the dose-response data is then outlined, followed by a description of the fiducial limit calcula-
tions. There is no attempt at mathematical rigor; for details, the reader is referred to Finney [3].

2 Overview of Probit Analysis

Probit Analysis is a procedure used to analyze data in which the outcome of an experiment is
quantal: there is a response (yes), or there is not a response (no). The probability of producing
a response depends on the input parameters to the experiment. In an experiment to determine
the laser-induced retinal damage threshold at a specified wavelength, pulse duration, and irradiance
diameter, the input parameter is the energy of a pulse from the laser. A yes response corresponds to
the observation of a lesion in the retina; no response means no alteration of the retina is observed.

2.1 Dose-Response Curve

In probit analysis, dose-response data is assumed to follow a log-normal distribution. That is,
for a given dose q, the probability of a response is

T ,-o L 2- J
f. 1

where x = logl 0 (q). The goal is to find the values of p and a which best describe a set of experimental
data.

Figure 1 shows the characteristic sigmoid shape of this distribution. The curve in this figure illus-
trates a normal distribution having a mean ja = 1.0 and standard deviation ar = 0.2.

1

1.0

0.9

0.8

0.7

0.6

• 0.5 .

0.4

0.3

0.2 -

0.1-

0.0 -
I I I I I 1

1.0 2.0 5.0 10.0 20.0 50.0 100.0

dose

Figure 1: Example dose-response curve with a log-normal distribution having a
mean y - 1.0 and a standard deviation a = 0.2. These values correspond to
ED5 0 = 10P = 10.0 and ED8 4/ED 50 = ED50/ED16 = 10' = 1.58. The gray lines
indicate the 16% level (y - o), the 50% level (yi), and the 84% level (A + a).

The notation ED5 o is used to refer to the the median effective dose, that is, dose at which the
probability of producing a result is 50% (e.g. the laser pulse energy expected to produce a retinal
lesion in half of the exposures). It is the ED50 value obtained from a laser exposure experiment that
is quoted as the damage threshold. From Equation 1, we can see that P(x = [u) = 0.5. Therefore,
the ED5 0 is related to the mean of the probability distribution as ED5 0 = 10A. The ED50 extracted
from the curve of Figure 1 is ED5o = 101 = 10.0.

The steepness of the curve in Figure 1 is related to the standard deviation a- of the distribution. For
exposure data exhibiting a very sharp threshold, a will be very small, and the dose-response curve
will approach a step function. If the exposure data is of poorer quality, or will be larger, and the
dose response curve will have a finite slope.

For the log-dose value X8 4 = •+ ±a, the probability of producing a lesion is P(x84) = 0.84. The ED 84

dose is given by ED8 4 = 10/+'. The ratio ED8 4/ED 5o = 10' is directly related to the standard
deviation of the dose-response distribution. In reports produced by USAMRD, the ratio EDs 4/ED50
is referred to as the "slope of the probit curve," and is used as a measure of how tightly a damage
threshold has been determined from laser exposure data. Typically, EDs 4 /ED50 is found to be in
the range 1.0 to 2.0.

Note: At the log-dose value X16 = y - a, the probability of producing a lesion is P(x16) = 0.16.
In this case ED16 - 10"-', and therefore the ratio ED5o/ED16 - 10' also gives a direct measure
of the standard deviation of the dose-response distribution.

2.2 Probit Transformation

Making the change of variable

(t -)(2)
a

2

in Equation 1 leads to the following expression for the probability distribution:

P(X)= exp - du (3)

By using the probit transformation, defined as

Y-5= (x-p) (4)

the probability distribution (Equation 3) becomes

P(Y) Y 5 exp du (5)
2-7r J 2 J

The probit value Y = 5 corresponds to the mean log-dose p. Increasing the log-dose value x by la
increases the probit value by 1.

Note: The Normal Equivalent Deviate is defined as Y = (x - P)/a, which takes on negative
values for x < p. This made data analysis more difficult, especially before the wide availability
of desktop computers. Defining the probit with an offset value of 5 generally limits the probit
values to positive numbers. A probit of Y = 0 corresponds to x = p - 5a. From Equation 1,
P(y-5a) = 2.9 x 10-7, a probability value unlikely to be encountered in any realistic experiment.

Figure 2 shows the dose-response curve of Figure 1 replotted on a linear scale of probit values. The
(now non-linear) percentage axis is drawn on the right side of the plot. The probit transformation
(Equation 4) has linearized the data; the probit value is a linear function of the log-dose value:

Y = a + bx (6)

The slope and intercept are (from Equation 4)

a = 5 - p/ (7)

b =1/ (8)

Linearization makes it possible to extract information from the data using a graphical analysis [1].
After drawing a best-fit line by eye on a plot of probit vs. log-dose (Figure 2), p and u are deter-
mined using Equations 7 and 8. However, the probit transformation also serves as the basis for the
automated fitting procedure used by ProbitFit (Section 3).

Note: The Probit program reports the value b from Equation 6 as the "slope of the probit
curve." From Section 2.1, a = logl 0(EDs 4/EDs0). Recall that the ratio ED84/EDs 0 is the
USAMRD definition of the "slope" (Section 2.1). The two definitions of the "slope" are related
through Equation 8:

1

log10 (EDs4/ED 5o) (9)

3

0.997-

• 0.9

0.7

>~ 5 ---- - 0.5 2
0.3

4-
0.1

3
0.01

2.0 5.0 10.0 20.0 50.0

dose

Figure 2: The dose-response curve of Figure 1 replotted on a linear scale of pro-
bit values (Equation 4). The right-hand axis shows the corresponding percentage
values. The gray lines indicate the 16%, 50%, and 84% percentage levels.

2.3 Binomial Distribution and Exposures at a Single Dose

The log-normal distribution of Equation 1 gives the probability P(x) of a lesion being produced by
a single exposure. If n exposures are made at the same dose, the probability of producing r lesions
is determined from the binomial distribution:

Pr(rln) = n ! P(x)r (1 - P(x))n-r (10)
r! (n- r)

The mean and variance in the expected number of lesions is

S= nP(x) (11)

Var(r) = nP(x) (1 - P(x)) (12)

2.4 Damage Threshold Experiments and Probit Analysis

An experimental determination of the damage threshold for laser-induced retinal injury generally
consists of making exposures at a number of pulse energies in the retinas of one or more test subjects
(usually non-human primates, or NHPs). The selected pulse energies are expected to bracket the
damage threshold value. Multiple exposures at each pulse energy may be made. The retinal exposure
sites are then examined ophthalmoscopically (usually 1 hour or 24 hours after exposure). The
presence of a minimal visible lesion (MVL) is generally used to determine whether there was or was
not a response to the particular laser pulse.

Assume ni exposures are made at the pulse energy (dose) qi, and ri lesions are observed, for each
of the i = 1,..., k pulse energies used in the experiment. From Equation 11, the ratio pi = r/ni
provides an estimate of the dose-response curve (Section 2.1) at the log-dose value xi = logl 0 (qi).

4

The experimentally determined dose-response curve, that is, the plot of the ratios pi versus the
log-dose values xi, is expected to exhibit the characteristic sigmoid shape of Figure 1. The goal of
the probit analysis is to determine the values of the parameters ju and U such that Equation 1 best
describes the data. The value for ED5 0 and its fiducial limits (Section 4) may then be determined.

3 ProbitFit Fitting Procedure

ProbitFit uses an iterative fitting procedure to find the slope and intercept of the probit line. The
mathematical derivation of the procedure, based on the Method of Maximum Likelihood, is described
in detail by Finney [3]. It is difficult to work directly with the normal distribution curve of Equation 1
to derive the maximum likelihood equations. This is because, for example, partial derivatives of P(x)
with respect to ju and a are required. Therefore, the derivation of the fitting procedure is based on
using the probit transformation (Equation 4) to linearize the data.

The total probability of observing ri lesions in ni trials at log-dose xi for each of the i 1,. . ., k
doses (pulse energies) is

k

P(rj,...,rk) = JJPr(rijni)
=1 (13)
k (ni) p(Y)(-P())-r

SH ri
i=1

It is assumed that the "true" dose-response distribution maximizes P. The total probability P is
proportional to exp(L), where the likelihood function is

k k

L(a, b) = Z jr log(P(Yi)) + -(ni - ri) log(1 - P(Yi)) (14)
-i=l

The dependence of L on the parameters a and b enters through Equations 5 and 6 for P(Y).
Maximizing the likelihood function L will maximize the total probability P. Doing this leads to an
iterative procedure which, for each iteration, is identical to performing a weighted linear regression
for the parameters a and b.

3.1 Input

The input needed for the fitting procedure is the experimentally-determined dose-response data:

xi log10 of the ith dose level

ni # of trials at dose level xi
ri # lesions observed at dose level xi

pi = ri/ni Experimental estimate for P(xi)

Note, however, that the input to ProbitFit consists of the raw dose-lesion data, which lists, for each
trial, the dose (beam or pulse energy) at which the trial was run, and whether a lesion was produced.
The program will process the raw data to calculate the xi, ni, ri and pi values.

5

3.2 Iterative Fitting Procedure

The iterative fitting procedure used by ProbitFit can be outlined as follows:

1. Guess an initial value for the slope b and intercept a. ProbitFit starts with b = 0 and a = 5.

2. Calculate Yj = a + bxi for each log-dose value xi.

3. Use Equation 5 to calculate Pi = P(YZ - 5) for each value xi.

4. Calculate
1 x (Y -5)2 (15)zi = 72exp=1

5. Calculate the working probits

Yi = Yi + (Pi - Pi)/zi (16)

6. A weighted linear regression [4] of the working probits yj versus the log-doses xi is performed
to find new, improved values for the slope b and intercept a. The weight factor for each dose
level is niwi, where

W i (17)
A• -P(I - A•)

7. Go back to step 2, repeat until convergence.

The mean IL = logl 0(EDh0) (Equation 1) is calculated at the end of each iteration. This is done by
setting Y = 5 in Equation 6. Convergence is considered to occur when the change in p from one
iteration to the next is smaller than a user-controlled tolerance level.

Note: ProbitFit actually produces a fit of the form Y = 9 + b(x - •), where jt and 9 are

weighted averages of the log-dose and working probit values. This is because b, t and 9 are
used to calculate fiducial limits on ED50 . (The weighting factors in calculating the averages are
equal to niwi, where wi is determined from Equation 17.)

3.3 Goodness of Fit, x2

Although the fitting procedure produces a linear fit of the form of Equation 6, recall that the goal
is to fit the experimental data to the log-normal distribution curve, Equation 1. Therefore, the
measure of the goodness of the fit is

2 (Pi - P(xi))2 (18)

X Var(pi) (8

P(xi) is to be calculated using the final fit result. The weight of each point (dose level) is determined
from the binomial distribution. Since pi = ri/ni, then from Equation 12

Var(pi) = P(xi) (1 - P(xi)) (19)
ni

6

Therefore

k2

2 k ~(Pi _- (i)
i=1 P(xr) (1 - P(xi)) (20)

Using equations 16 and 17, this can be reduced to a form useful for calculations:

k nw (y i) (21)

where yj is the working probit, and Yj is calculated from the final fit. A statistical test of the quality
of the fit is then provided by the X2 distribution for (k - 2) degrees of freedom, where k is the
number of different pulse energies used in the experiment.

4 Fiducial Limits

The fiducial limits are an estimate of the range of values for the ED50 which is supported by the
statistical analysis of the data with some specified level of confidence.

4.1 Uncertainties in the Fit

The probit fitting procedure provides an equation to calculate the expected probit value for a given
log-dose value x

Y =+ b(x -:t) (22)

The fitting procedure also provides estimates Var(q) and Var(b) for the variance in the fit parameters
Sand b. From this, the variance in the expected probit value may be determined:

Var(Y) = Var(q) + (x - t)
2Var(b) (23)

Note that Var(Y) increases as the x moves away from the mean value t of the log-dose values used
in the exposure experiment.

4.2 Fiducial Limits for the Probit Value

In the usual statistical interpretation, experimentally determined probit values are expected to be
normally distributed about a mean value Y (Equation 22) with a standard deviation a = V-ar(Y).
68% of measured probit values are expected to lie within one a of Y. One says that the fiducial
limits of Y are given by Y ± -V-ar(Y) at a confidence level of 68%.

More generally, the upper and lower fiducial limits to Y may be calculated as

7

ii

0.99

- 0.9

- 0.7

- 0.5
. /0.3

0.1

0.01

ED50
S- LFL UFL

1.0 2.0 5.0 10.0

dose

Figure 3: Example of a probit curve, including the 95% confidence level fiducial
curves. The horizontal gray line indicates the 50% probability of response level. As
indicated, the position at which this level intersects the probit curve and the two
fiducial curves indicates the ED50 and the Upper and Lower Fiducial Limits for the
ED5o.

YUFL = Y + t Var(Y) (24)

YLFL = Y - tVVar(Y) (25)

where t is the normal deviate for the desired confidence level. That is, find t such that

1. t 1 2 confidence level
Pnorm(t) =1 exp(-iu) du = 0.5 c (26)

27r J. 2 2

The value t = 1.96 corresponds to a 95% confidence level.

The far right side of Equation 26 can be understood as follows: Po,.m(1.96) = 0.975, which
means that the probability of finding a probit value Y > YUFL is 2.5%. By the symmetry of
the normal probability density function, the probability of finding a probit value Y < YLFL is
also 2.5%. Therefore, the probit value is expected to be in the range YLFL <_ Y < YUFL with a
probability of 95%.

Figure 3 shows the results of a probit analysis 6n a set of experimental laser exposure data. The 95%
confidence level fiducial curves have been included. Note that they have the characteristic bowed
shape expected from Equations 24, 25 and 23.

8

4.3 Fiducial Limits on the Dose

Of greater interest is the dose and the fiducial limits on that dose that produces a response with a
specified probability level. Of particular interest here is the laser beam power or pulse energy that
will produce a retinal lesion in 50% of exposures, i.e., the ED50.

The method for locating the fiducial limits for the ED50 is illustrated in Figure 3. The horizontal
line in the figure indicates the 50% probability of response level. This level intersects the straight
probit curve at the ED50 dose level (as indicated by the dropped vertical line in the figure). The
dose at which the 50% level intersects the fiducial curve to the left of the probit line is the Lower
Fiducial Limit for the ED50 , while the dose at which this level intersects the fiducial curve to the
right of the probit line gives the Upper Fiducial Limit for the ED50.

Mathematically, Equations 24 and 25 are inverted to solve for the values XUFL and XLFL such that
YUFL and YLFL are equal to the probit value corresponding to the desired response level. For the
ED50 , this value is Y = 5. For the response probability P, the fiducial limits on xp = logl 0(EDp)
are

XUFL(LFL) = XP + - ±X t g)Var~y + (Xp _.t)2 Var(b)] 2 (27)
1 g-------5 g)

t2
g = ý-2Var(b) (28)

The +(-) corresponds to the upper (lower) limit. The upper and lower fiducial limits for the EDp
are then lOXUFL and 1OXLFL.

Because of the shape of the fiducial curves (and also because the independent variable is the log10 of
the dose), the fiducial limits will be asymmetric about EDp. As Figure 3 indicates, the asymmetry
increases the further the probability level is from 50%.

If the heterogeneity factor h = X2/(k - 2) is large (i.e. is significant as measured by the X2

distribution for k - 2 degrees of freedom, where k is the number of exposure levels considered),
then the variances in Equation 27 must be multiplied by h, and the factor t is obtained from a
Student's t-distribution. (See Finney [3] for details.)

5 Comparison of the ProbitFit and Probit Programs

In their report, Cain, Noojin and Manning [2] compared several procedures for performing a probit
analysis with the Finney method (as implemented in Probit). Although they noted some differences
in the results obtained by different methods, these differences were generally inconsequential com-
pared to experimental uncertainties. In this section, we compare results from ProbitFit and Probit
for three sample data sets. Numerical values are deliberately quoted to more decimal places than
would normally be reported.

5.1 70 msec Pulse Data

This data set, taken from Table A-II of Frisch [1], is for 70 msec pulsed exposure data. The data
has been binned by the pulse energy. Table 1 lists results of fitting this data set using ProbitFit and

Table 1: Comparison of fits to 70 msec pulse data
Parameter ProbitFit Probit 2.1.2.3
ED50 12.400 12.400
Upper FL 13.751 13.751
Lower FL 10.848 10.848
ED84 18.568 18.568

UpperFL 22.280 22.280
Lower FL 16.536 16.536
Slope of fit, b 5.67 5.67
Iterations 7 56

1.0 - 0.99

0.950.84 0.9

., 0.8

0.7

0.50.
0.4

.0.3
0.2

0.1

0.0 ° I0.0o
10 1 102 100 101 102

Dose Dose

Figure 4: Dose-response and probability curve graphs of ProbitFit fits to 70 msec pulsed
data [1].

Probit. Figure 4 shows a graph of the data set and the resulting fit which has been generated by
the ProbitFit program.

The two programs have produced identical results, although the ProbitFit program required far
fewer iterations. The programs were run with their default settings. In particular, the default
tolerance used to test for convergence in the fitting procedure is far tighter in Probit (1 part in
10`8 for Probit versus 1 part in 10-9 for ProbitFit). The results obtained here indicate that the
default tolerance used by Probit is far tighter than necessary to obtain an good fit to the data.

5.2 3.5 nsec Pulse Data at 540 nm

This data set was obtained for exposures at the wavelength 540 nsec for 3.5 nsec pulses [5]. In
this case, the data was not pre-binned by pulse energy before analysis. A comparison of the results
obtained using ProbitFit and Probit is presented in Table 2. Once again, the two program produce
the same results. Graphs of the ProbitFit results are shown in Figure 5.

10

Table 2: Comparison of fits to 3.5 nsec pulse data at 540 nm
Parameter ProbitFit Probit 2.1.2.3

ED5o 6.218 6.218
Upper FL 7.208 7.208
Lower FL 5.503 5.503
ED8 4 7.990 7.990
Upper FL 11.083 11.083
Slope of fit, b 9.13 9.13
Iterations 14 23

1.0 0.99

0.84 O.9S

/ 0.8
0.5 0.7So.6

0,4

0.3

0.2

0.16 0.1

0.05
0 .0 1 -o ~]

i0-o 10 i01 102 10. 101 102

Dose Dose

Figure 5: Dose-response and probability curve graphs of ProbitFit fits to 3.5 nsec pulsed
data at A = 540 nm [5].

11

Table 3: Comparison of fits 1.33 pm corneal threshold data
Parameter ProbitFit Probit 2.1.2.3

ED 50 233.188 233.188
Upper FL 78.987 78.982
Lower FL 327.742 327.744
ED84 506.640 506.640
Upper FL 1453.767 1432.849
Slope of fit, b 2.95 2.95
Iterations 10 56

1.0 Pk ow 0.99

0.84 0.9

0.8

• -/n0.7

0.4

* 0.3

0.2

0.10.16 0.

0.05

0.10 0000 0 0.0 0
101 103 104 10-1 101 101 10 2 103 10 101

Dose Dose

Figure 6: Dose-response and probability curve graphs of ProbitFit fits corneal threshold
data at \ = 1.33 jim [6].

5.3 1.33 pm corneal threshold data

This data set was recorded for a measurement of the corneal damage threshold for exposures at a
wavelength of 1.33 jm [6]. A comparison of the ProbitFit and Probit results is presented in Table 3.
Figure 6 shows a graph of the ProbitFit results.

Although the ED50 and ED 84 values are identical, there is a discrepancy at the 10-5 level between
the fiducial limits calculated by the two programs. The origin of this discrepancy is not clear. It
is unlikely to be related to the convergence test for the fit procedure, since the EDp values are
identical. The difference is considered insignificant for practical purposes.

6 Conclusion

The ProbitFit program to perform a probit analysis of dose-response data has been developed by
the author for USAMRD. ProbitFit produces essentially identical results as Probit version 2.1.2.3
when used to analyze the same data set, while adding the significant capability to produce graphs of
the data and resulting fits. ProbitFit can therefore be recommended as a new tool for the analysis
of laser damage threshold experiments.

12

References

[1] G.D. Frisch, "Quantal Response Analysis as Applied to Laser Damage Threshold Studies," Mem-
orandum Report M70-27-1 of the Joint AMRDC-AMC Laser Safety Team, Dept. of the Army,
Frankford Arsenal, Philadelphia, PA (1970).

[2] C.P. Cain, G.D. Noojin, L.M. Manning, "A Comparison of Various Probit Methods for Analyzing
Yes/No Data on a Log Scale," USAF Technical Report AL/OE-TR-1996-0102. Brooks AFB, TX:
USAF Armstrong Laboratory (1996).

[3] D.J. Finney, Probit Analysis, 3rd. ed., Cambridge University Press, New York (1971).

[4] P.R. Bevington, Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill Book
Company, New York (1969).

[5] D.J. Lund, P. Edsall, B.E. Stuck, "Wavelength Dependence of Laser-Induced Retinal Injury,"
SPIE Vol. 5688:383-389 (2005).

[6] J. Zuclich, P. Edsall, D. Lund, B.Stuck, "Ocular Effects and Safety Standard Implications for
High-Power Lasers in 1.3-1.4 mm Wavelength Range," USAF Technical Report AFRL-HE-BR-
TR-2004-0187. Brooks City-Base, TX: USAF Research Laboratory (2004).

[7] Sun Microsystems - Sun Developer Network web site (http://java.sun.com)

13

A Selected Source Code Files

ProbitFit was written using the Java programming language. It was developed using the Java
1.5 JDK from Sun Microsystems [7]. Much of the source code deals with the user interface, and
is not reproduced here. This appendix contains the source code for the classes used to store data,
implement the iterative fitting procedure, and subsequently calculate the effective dose (EDp) values
and associated fiducial limits.

A.1 TrialDataltem.java

package ng.probitfit.data;

/*

* Class to hold the result of a single trial, i.e., the dose used,
* and whether or not there a response was observed for that dose.
*/

public class TrialDataItem implements Comparable<TrialDataItem>

public double dose;
public boolean response;

/*

* Constructors
*/

public TrialDataItem ()
dose = 0.0;

response = false;
}

public TrialDataItem (double d, boolean r)
dose = d;

response = r;
}

/*

* String representation for printing to file
*/

public String toString 0)
return String.format ("%-10.3f %d", dose, response ? i 0);

* Implementation of Comparable interface
*/

public int compareTo (TrialDataItem tdi)
// order determined by 'dose' field
return Double.compare (dose, tdi.dose);

}

14

A.2 TrialDatajava

package ng.probitfit.data;

import java.util.*;

/*

* A collection of TrialDataltem objects
*/

public class TrialData extends ArrayList<TrialDataItem> {

// default data description
private static String DEF-DESCRIPTION =

// description of the data
private String description = DEFDESCRIPTION;

/*
* Clear the data
*/

public void clear 0) {
super.clear ();
description = DEFDESCRIPTION;

}

/* Set or get the description of the data */
public void setDescription (String desc) {

description = desc;
}

public String getDescription 0) {
return description;

}

public void sort 0) {
Collections.sort (this);

}

A.3 DoseResponseDataftem.java

package ng.probitfit .data;

/*

* Class to hold a single probit data point of the dose-response curve.
* Each data point includes the dose, number of trials at that dose,
* number of responses at that dose, and the fraction of trials in
* which a response is observed (= # responses / # trials)
*/

public class DoseResponseDataItem implements Comparable<DosefesponseDataItem> {

public double dose;

15

public int trials;
public int responses;
public double responseFraction;

/*

* Constructors
*/

DoseResponseDataItem 0) {
dose = 0.0;

trials = 0;

responses = 0;

responseFraction = 0;
}

DoseResponseDataItem (double dose, int trials, int responses) {
this.dose = dose;

this.trials = trials;
this.responses = responses;
this.responseFraction = (double) trials / (double) responses;

DoseResponseDataItem (TrialDataItem tdi)
dose = tdi.dose;

trials = 1;

responses = (tdi.response) ? 1 : 0;
responseFraction = (double) responses;

/*

* String representation

public String toString 0)
return String.format ("Y.-10.2f%-7d%-4d",

dose, trials, responses);

/*

* Implementation of Comparable interface
*/

public int compareTo (DoseResponseDataItem drdi)
// order by 'dose' field
return Double.compare (dose, drdi.dose);

A.4 DoseResponseData.java

package ng.probitfit.data;

import java.util.*;

/*

16

* Collection of DoseResponseDataltem objects
*/

public class Dosel.esponseData extends ArrayList<DoseResponseDataItem> {

/*

* Sort the items in the collection

public void sort 0) {
Collections.sort (this);

}

/*

* Factory method to create a DoseResponseData from
* a TrialData object

public static DoseResponseData create (TrialData td) {
// init return value
DoseResponseData drd = new DoseResponseData (;

// use a HashMap, keyed by the dose value, to organize the data
HashMap<Double, DoseResponseDataItem> map =

new HashMap<Double, DoseResponseDataItem> 0;

Iterator<TrialDataItem> iter = td.iterator);
while (iter.hasNext 0) {

TrialDataItem tdi = iter.next 0;
Double key = new Double (tdi.dose);

if (map.containsKey (key)) {
II update # trials, # responses, and response fraction
II at this dose
DoseResponseDataItem drdi = map.get (key);
drdi.trials++;
if (tdi.response) drdi.responses++;
drdi.responseFraction =

(double) drdi.responses / (double) drdi.trials;
} else {

// entry not found - add new item for this dose
map.put (key, new DoseResponseDataItem (tdi));

}

// insert contents of map into DoseResponseData and sort
if (map.size 0) > 0) {

Iterator<DoseResponseDataItem> mapIter =

map.values ().iterator 0;
while (mapIter.hasNext 0)) {

drd.add (maplter.next 0));
}

drd.sort 0;
}

return drd;

17

}

A.5 ProbitFit.java

package ng.probitfit.fit;

/*

* Results of a Probit Fit
* Includes slope and intercept of the fit line,
* variance of slope and intercept,
* ybar (weighted avg. of working probit values) and its variance,
* xbar (avg. of logiO(dose)),
* chi-squared of fit,
* # degrees of freedom

* All these values are neede to calculate ED(prob) values, and the
* associated fiducial limits.
*/

public class ProbitFit

public double a; II intercept
public double b; II slope
public double varA; // variance of intercept
public double varB; II variance of slope
public double varYbar; II variance in weighted mean of probits
public double chi2; II chi-squared of fit
public int degFreedom; // degrees of freedom (= # pts - 2)

public double xbar; II weighted avg of loglO(dose) (for fid. limits)
public double ybar; II weighted avg of probit values (diagnostic)
public int numIterations; // # iterations required for fit

public double Sxy; II diagnostic, used to calc. fit parameters
public double Syy; II (varB = i/Sxx, varYBar = i/So)

public boolean infiniteSlope; // set to 'true' if the slope b meets
II some program-defined criterion
II to be considered 'inifinite'
I/ This affects fid. limit calcs.

/*

* Default constructor
*/

public ProbitFit 0)
a = 0.0;

b = 0.0;

varA = 0.0;

varB = 0.0;

varYbar = 0.0;

chi2 = 0.0;

degFreedom = 0;

18

xbar = 0. 0;
ybar = 0. 0;
numInterations = 0;
Sxy = 0.0;
Syy = 0.0;
infiniteSlope = false;

*Copy constructor

public ProbitFit (ProbitFit pf){
a = pf.a;
b = pf.b;
varA = pf.varA;
varB =pf.varB;
varYbar = pf .varYbar;

chi2 =pf.chi2;
degFreedom = pf.degFreedorn;
xbar =pf.xbar;
ybar =pf.ybar;
numlterations = pf.numlterations;
Sxy = pf.Sxy;
Syy = pf.Syy;
infiniteSlope = pf.infiniteSlope;

*String representation, for debugging purposes

public String toString C
StringBuffer sb = new StringBuffer ("a--");
sb.append (a); sb.append C' 11);
sb.append ("b="); sb.append (b); sb.append ("\n");
sb.append (I'varA="); sb.append (varA); sb.append C")
sb.append ("varB="); sb. append (varB); sb.append ("\n");

sb.append ("chi2="); sb.append (chi2); sb.append (" 1) ;
sb.append ("degFreedom="); sb.append CdegFreedom);

return sb.toString 0

A.6 ProbitfitProcedure~java

package ng.probitf it .fit;

import java.util.*;

import ng.probitf it .data.*;

19

* Class that performs the probit fitting procedured
*/

public class ProbitFitProcedure {

// default values for fit procedure parameters
private static double DEFTOLERANCE = 1.0e-9;
private static int DEFMAXITER = 55;

// Slopes greater than this value should be flagged as 'infinite'
private static double INFINITESLOPE = 200.0;

// class fields
private WorkingData wd;
private double tol = DEFTOLERANCE;
private int maxIter = DEFMAXITER;

private ProbitFit probitFit = new ProbitFit (;

/*

* Constructor - requires a DoseResponseDataSet as input
*/

public ProbitFitProcedure (DoseResponseData drd) {
wd = new WorkingData (drd);

probitFit.degFreedom = wd.size () - 2;
}

/,
* Accessors to get/set fit procedure parameters
*/

public void setTolerance (double tolerance) { tol = tolerance; }
public double getTolerance C) { return tol; }

public void setMaxIterations (nt n) { maxIter = n; }
public int getMaxIterations 0) { return maxIter; }

/*

* Return results of fit
*/

public ProbitFit getFit C) { return probitFit; }

/*

"* Perform the fit procedure
"* Returns # iterations if fit converges
* -1 if max. iterations reached without convergence
*/

public int doFit () {
II initial guess for fit equations is intercept a = 5.0,
II slope b = 0.0, i.e., all Yp = 5
probitFit.a = 5.0;

probitFit.b = 0.0;

I/ Convergence of fit process is determined by considering the
// change in calculated loglO(ED50) values between iteration steps

20

double xS0 = 0.0;
double oldXSO;

probitFit.numIterations = 0;

do {
oldX50 = x50;
// update weights, working probits, etc for current fit

wd.updateForFit (probitFit.a, probitFit.b);

iterationStep ();
x50 = (5.0 - probitFit.a) / probitFit.b;

if (probitFit.b > INFINITESLOPE) probitFit.infiniteSlope true;

++probitFit.numIterations;

if (probitFit.numIterations >= maxIter) {
// flag no convergence in prescribe # of iterations ...

probitFit.numIterations = -1;

break; // ... and break out of loop
}

} while ((Math.abs (x50 - oldX5O) > tol) && !probitFit.infiniteSlope);

return probitFit.numIterations;

/*

* Perform one step of the iterative fitting procedure
*!

private void iterationStep 0) {
double Sx = 0.0; II sum of w*x

double Sy = 0.0; II sum of w*ywp
double S = 0.0; II sum of w

// iterate through data to find xbar (avg of loglO(dose)) and

II ybar (avg of working probit values)
Iterator<WorkingDataItem> iter = wd.iterator (;

while (iter.hasNext 0) {
WorkingDataItem wdi = iter.next 0;
S += wdi.w;

Sx += wdi.w * wdi.x;

Sy += wdi.w * wdi.ywp;

}

double xbar = Sx / S;

double ybar = Sy / S;

II now iterate to calculate Sxx = sum (w * (x-xbar)-2),

II Sxy = sum (w*(x-xbar)*(y-ybar)), Syy = sum (w*(y-ybar)-2)
double Sxx = 0.0;

double Sxy = 0.0;

double Syy = 0.0;

double Sb = 0.0; // sum (w*(x-xbar)*ywp)

iter = wd.iterator); II reset iterator to beginning of data
while (iter.hasNext 0) {

WorkingDataItem wdi = iter.next 0;
double tx = (wdi.x - xbar);

21

double ty = (wdi.ywp - ybar);
Sxx += wdi.w * tx * tx;
Sxy += wdi.w * tx * ty;
Syy += wdi.w * ty * ty;
Sb += wdi.w * tx * wdi.ywp;

// now calculate intercept, slope, variances, and chi-2
probitFit.b = Sb / Sxx;
probitFit.a = ybar - probitFit.b * xbar;
probitFit.varB = 1.0 / Sxx;
probitFit.varYbar = 1.0 I S;
probitFit.varA = 1.0 / S + xbar * xbar / Sxx;
probitFit.chi2 = Syy - Sxy * Sxy / Sxx;
if (probitFit.chi2 < 0.0)

probitFit.chi2 = 0.0; // pathological data sets
probitFit.xbar = xbar;
probitFit.ybar = ybar;
probitFit.Sxy = Sxy;
probitFit.Syy = Syy;

A.7 WorkingDataltem.java

package ng.probitfit.fit;

import ng.math.*;
import ng.probitfit.data.*;

* Hold information from a single trial for the probit fit procedure.
* Holds loglO(dose), # trials, and observed probability of response.
* Also holds the probit value from the current fit iteration
* (Y = a + b*x), P(Y), z, weight, and working probit value
*/

class WorkingDataItem implements Comparable<WorkingDataItem> {

public double x; // loglO(dose)
public int n; // # trials at dose
public double Pobs; // observed # responses / # trials at dose

public double Yp; // probit value for current fit iteration
public double z; // prob. density for Yp (from normal density fn)
public double Py; // prob. for Yp (from normal distribution)
public double w; // weight for this point
public double ywp; // working probit value

private static final double MINP = 10.0 * Double.MINVALUE;

/* constructors */
public WorkingDataItem (double dose, int n, double prob) {

22

x = Functions.logiO (dose);

this.n = n;
Pobs = prob;
updateForFit (5.0, 0.0);

public WorkingDataltem (DoseResponseDataltem drdi){
x = Functions.logiO (drdi.dose);

n = drdi.trials;
Pobs = drdi.responseFraction;
updateForFit (5.0, 0.0);

* Calculate probit values, weight, etc. for a specified
* intercept a and slope b

public void updateForFit (double a, double b){

// Probit value based on current intercept and slope
Yp = a + b x;

double ypm5 =Yp - 5.0;
z = Distributions.dnorm (ypm5);
Py = Distributions.pnorm (ypm5);

if (Math.abs (Pobs - Py) <= MINP){
w = 0.0;

ywp= Yp;
}else{

w =(double) n * z * z / (Py *(1.0-Py));
ywp = Yp + (Pobs - Py) / z;

*Comparable interface method

public mnt compareTo (WorkingDataltem wdi){
// order by x {logIO(dose)}
return Double.compare (x, wdi.x);

A.8 WorkingData~java

package ng .probitf it. fit;

import java.util.*;

import ng.probitf it .data. *;

23

* Collection of WorkingData, used to perform the Probit Fit
*/

class WorkingData extends ArrayList<WorkingDataItem> {

/*

* Constructor - creates a WorkingData object from a
* DoseResponseData
*/

public WorkingData (DoseResponseData drd) {
Iterator<DoseResponseDataItem> iter = drd.iterator 0;
while (iter.hasNext ()) {

add (new WorkingDataItem (iter.next 0));
}

}

/,

* Sort the collection
*/

public void sort 0) {
Collections.sort (this);

}

/*

* Update the WorkingDataItem items in this collection for the
* current iterations's fit parameters
*/

public void updateForFit (double a, double b) {
Iterator<WorkingDataItem> iter = iterator 0;
while (iter.hasNext ()) {

iter.next 0.updateForFit (a, b);
}

}

A.9 FitProcedureOptions.java

package ng.probitfit.fit;

/*

* Class to hold options controlling the fit procedure
*/

public class FitProcedureOptions {

I/ default settings
private static final int DEFTOLEXPONENT = 9;
private static final int DEF.MAXITERATIONS = 55;

// data fields
public int tolExponent; // fit procedure convergence test uses

I/ tol = 10(-tolExponent)
public int maxIterations;

24

*Constructors

public FitProcedure0ptions 0) {
tolExponent = DEFTOLEXPONENT;
maxIterations = DEFMAXITERATIONS;

}

public FitProcedure0ptions (FitProcedurefptions fpo) {
tolExponent = fpo.tolExponent;
maxIterations = fpo.maxIterations;

}

A.10 EDEvaluator.java

package ng.probitfit.fit;

import ng.math.*;

*Class to calculate ED(prob) values using the results of a Probit Fit.

public class EDEvaluator {

// data fields
private ProbitFit pf; // result of fit
private double confLevel; I/ fiducial limit confidence level
private double heteroTestLevel; // test for heterogeneity

private double h; II heterogeneity factor
private double t; // value of normal or student distribution

II corresponding to fiducial confidence level

private double g; // factor for fiducial limit calculations
private double onemg; // (1.0 - g)
private double gdlmg; II g/(g-1), factor in fid. limit calculation

private double facSqrt; // (t*sqrt(h))/(b*(i-g)), in fid. limit calc.

private boolean initialized; // flag for lazy eval of params

*Constructor

public EDEvaluator (ProbitFit probFit, FiducialLimitOptions options) {
pf = probFit;

confLevel = options.confidenceLevel;

heteroTestLevel = options.heterogeneityTest;

25

// indicate that h, t, g, gml need to be calculated
initialized = false;

}

*Read-only accessor for intermediate calculation factors

public double getH 0) {
if Clinitialized)

init (;
return h;

public double getG 0) {
if (!initialized)

init ();
return g;

}

public double getT 0) {
if (!initialized)

init C);
return t;

*Return ED and fiducial limits for requested probablity level

public ED getED (double probability) {
if (!initialized)

init ();

II get probit corresponding to probability, recalling that
// the probit value is defined as the value y such that
II pnorm (y-5) = probability
double y = Distributions.qnorm (probability) + 5.0;

// loglO (ED)
double x = (y -pf.a) / pf.b;

// loglO(fiducial limits)
double xUpper = x;
double xLower = x;

if (!pf.infiniteSlope) {
// terms for fiducial limits
double xmxbar = x - pf.xbar;

double fA;
double fB = onemg * pf.varYbar + xmxbar * xmxbar * pf.varB;

if (fB <= 0.0) {
// safety check - not sure if this is possible
// probably need some really screwed up data
fB = 0.0;

26

fA = 0.0;

} else {
fB = facSqrt * Math.sqrt (fB);
fA = gdimg * xmxbar; // g * (x-xbar) I (g-1)

}

II loglO(fiducial limits)
xUpper += (fA + fB);

xLower += CfA - fB);

ED ed = new ED 0;
ed.ed = Functions.tenTo Wx);
ed.upperFL = Functions.tenTo (xUpper);
ed.lowerFL = Functions.tenTo (xLower);

return ed;

*Calculate t and heterogeneity factor h

protected void init 0 {
double nu = (double) pf.degFreedom;
double px2 = Distributions.pchi2 (pf.chi2, nu); // chi^2 prob.

double probLevel = 0.5 + confLevel/2.0;
if (px2 < heteroTestLevel) {

// use heterogeneity factor, student distribution
h = pf.chi2 / nu;
t = Distributions.qstudent (confLevel, nu);

} else {
// use normal distribution
h 1.0;
t = Distributions.qnorm (probLevel);

}

double temp = t / pf.b; // h * t-2 / b-2

g = h * temp * temp * pf.varB;

onemg 1.0 - g;

gdimg = g / onemg;

facSqrt = Math.sqrt Ch) * temp / onemg;

initialized = true;

27

A.11 ED.java

package ng.probitfit.fit;

/*

* ED(prob) level and associated fiducial limits
*/

public class ED f
public double ed;
public double upperFL; II upper fiducial limit
public double lowerFL; II lower fiducial limit

}

A.12 FiducialLimitOptions.java

package ng.probitf it.f it;

/*

* Parameters used when calculating fiducial limits
*/

public class FiducialLimitOptions

// default values of the parameters
private static final double DEF.CONFLEVEL = 0.95;
private static final double DEFHETEROTEST = 0.10;

// data fields
public double confidenceLevel;
public double heterogeneityTest;

/*

* Default constructor
*/

public FiducialLimitfptions C)
confidenceLevel = DEFCONFLEVEL;
heterogeneityTest = DEFHETEROTEST;

/*
* Copy constructor
*/

public FiducialLimitOptions (FiducialLimitOptions flo)
confidenceLevel = flo.confidenceLevel;
heterogeneityTest = flo.heterogeneityTest;

}

28

A.13 Distributions.java

package ng.math;

/*

* Class to return probability distributions, densities, and quantiles
*/

public class Distributions

II Useful constants
private static final double SQRTOF2 = Math.sqrt(2.0);
private static final double SQRTOF2PI = Math.sqrt(2.0 * Math.PI);
private static final double SQRTPI = Math.sqrt(Math.PI);

// Class data
private Functions func = new FunctionsO;
private static double tol = 1.0e-8;

/*

* Set or get tolerance for numerical routines
*/

public static void setTolerance(double tolerance) f tol = tolerance; }
public static double getTolerance() f return tol; I

/*

* Normal distributions
* pnorm(x) = normal prob. distribution
* dnorm(x) = normal prob. density function
* qnorm(p) = quantile for normal prob. dist.
*/

public static double pnorm(double x)
return (1.0 + Functions.erf(x/SQRTOF2)) / 2.0;

}

public static double dnorm(double x)
return Math.exp(-x*x/2.0) / SQRTOF2PI;

}

public static double qnorm(double p)
// Use Newton-Raphson method to find the value x for which
// pnorm(x) = p
// Testing indicates # iterations < 10 for values of interest
// in the probit program
double x = 0.0; // initial guess
double dx;
do f

dx = (pnorm(x) - p) / dnorm(x);

x -= dx;

I while (Math.abs(dx) > tol);

return x;

29

/*

* Chi-square distribution
* Probability of observing a larger value of chi-squared than the
* input parameter chi2 for the nu degrees of freedom
* pchi2 large -> prob of observing a larger chi-squared is high
* -> good fit
*/

public static double pchi2(double chi2, double nu) {
return 1.0 - Functions.gammap(nu/2.0, chi2/2.0);

}

/*

* Student's distribution
* pstudent - prob. function

* qstudent - quantile
*/

public static double pstudent(double t, double nu) {
double x = nu / (nu + t~t);
return 1.0 - Functions.betainc(nu/2.0, 0.5, x);

}

public static double qstudent(double p, double nu) {
// pre-calculate some common factors for the derivative
double nupld2 = (nu + 1.0)/2.0;

double nud2 = nu/2.0;
double facl = Math.log(2.0/SQRTPI)

+ Functions.gammaln(nupid2)
- Functions.gammaln(nud2)
+ nud2*Math.log(nu);

double q = 0.0; II initial guess
double dq;
do {

double fac2 = facl - nupld2*Math.log(nu + q~q);

dq = (pstudent(q,nu) - p)/Math.exp(fac2);
q -= dq;

} while (Math.abs(dq) > tol);

return q;
}

A.14 Functions.java

package ng.math;

* Class provides special functions

* Includes:

* erf(x) Error function

30

* loglO(x) Log based 10
* tenTo(x) l10x

* gammaln(x) log of Gamma function

* gammap(a,x) incomplete gamma function

* betainc(a,b,x) incomplete beta function
*!

public class Functions {

// Useful constants

private static final double SQRTPI = Math.sqrt(Math.PI);

private static final double SQRT2PI = Math.sqrt(2.0*Math.PI);

private static final double LOGOF1O = Math.log(10.0);

private static final double TINY = 1.0e-30;

// Class data
private static double tol = 1.0e-14; // tolerance for numerical routines

1*
* Set or get tolerance for numerical calculations
*1

public static void setTolerance(double tolerance) { tol tolerance; }
public static double getToleranceo) { return tol; }

/*

* erf(x) - Error function
*1

public static double erf(double x) {
double sign = 1.0;
if (x < 0.0) {

x = Math.abs(x);

sign = -1.0;
}

II Testing indicates series solution requires fewer iteration for

II x < 2.5, while continued fraction converges faster for x > 2.5

if (x < 2.5) {
return sign * erfSeries(x);

} else {
return sign * (1.0 - erfcContFrac(x));

}

// Series solution for error func - called by erf(x)

private static double erfSeries(double x) {
// Series expansion from Abramowitz and Stegun

int k = 0;
double an = 1.0; // series term coeff.

double sum = 1.0; // value from 1st term of series

double oldsum;

// Not checking # iterations here - the erf(x) routine only calls this
// method for values of x < 2.5, a region for which at max 30-40

// iterations are required

do {

31

oldsum = sum;
++k;

an *= -x*x;
an 1= (double) k;
sum += an / (2.0 * k +1.0);

} while (Math.abs(sum - oldsum) > tol);

return 2.0 * x * sum / SQRTPI;
}

// Continued fraction solution for complimentary error function -

// called by erf(x)

private static double erfcContFrac(double x) {
// CF expression from Abramowitz and Stegun

// Lentz's method to evalute CF base on material from

I/ Numerical recipes in C

double c = x + 1.0/TINY; //start from bO = 0

double d = 1.0/x;

double delta = c * d;

double f = TINY * delta; // This takes care of 1st iteration

int i = 1;

double a = 1.0; // all bn = x for n > 0

do {
++j;

a = (double) (i-1) / 2.0;

// recursion relations for cn and dn
d = x + a*d;

if (d == 0.0) d = TINY; II Dangerous check

d = 1.0/d;

c = x + a/c;

if (c == 0.0) c = TINY; // Dangerous check

delta = c * d;
f = f * delta;

} while (Math.abs(delta-i.0) > tol);

return f * Math.exp(-x*x)/SQRTPI;
}

• loglO(x) - log based 10 of x

• tenTo(x) - 10-x
*/

public static double logl0(double x) {
return Math.log(x) / LOGOF10;

}

public static double tenTo(double x) {
return Math.exp(x * LOGOFlO);

}

• Natural log of gamma functions

32

private static final double gammaln-coeff[] = {
76.18009172947146,
-86.50532032941677,
24.01409824083091,
-1.231739572450155,
0.1208650973866179e-2,
-0.5395239384953e-5

public static double gammaln(double x) {
// Routine adapted from Numerical Recipes in C
double temp = x + 5.5;
temp -= (x+0.5)*Math.log(temp);
double y = x;
double sum = 1.000000000190015;
for (int i = 0; i< 6; i++) {

++y;

sum += gammaln.coeff[i]/y;
}
return -temp + Math.log(SQRT2PI * sum / x);

/*
• Incomplete gamma functions P(a,x)
*/

public static double gammap(double a, double x) {
// Routine adapted from Numerical Recipes in C
if (x < 0.0) {

throw new IllegalArgumentException("gammap: Iliegal arg, x=" + x);

if (a < 0.0) {
throw new IllegalArgumentException("gammap: Illegal arg, a=" + a);

}

if (x < a + 1.0) {
return gamSeries(a,x);

} else {
return 1.0 - gamContFrac(a,x);

}

// Support functions for gammap
private static double gamSeriesTolerance = 1.Oe-10;
private static double gamSeries(double a, double x) {

// Series solution for P(a,x)
double t = 1.0/a;
double sum = t;
double oldsum;
double aa = a;
do {

oldsum sum;
++aa;

t *= (x/aa);
sum += t;

} while (Math.abs(sum - oldsum) > gamSeriesTolerance);

33

return sum * Math.exp(-x + a*Math.log(x) - gammaln(a));
}

private static int GAMCF-MAXITER = 100;
private static double gamContFrac(double a, double x) {

I/ Constant fraction for 1.0 - P(a,x)
RI Routine adapted from Numerical Recipes in C

double b = x + 1.0 - a;

double c = 1.0/TINY;
double d = 1.0/b;

double h = d;
double delta;

int niter = 0;
do {

++niter;
double an = -niter * (niter - a);

b += 2.0;

d = an*d + b;

if (Math.abs(d) < TINY) d = TINY;
c = b + an/c;
if (Math.abs(c) < TINY) c = TINY;
d = 1.0/d;

delta = d*c;
h *= delta;

if (niter >= GAMCFMAXITER)
throw new RuntimeException("gamConstFrac: No convergence");

I
} while (Math.abs(delta - 1.0) > tol);

return Math.exp(-x + a*Math.log(x) - gammaln(a))*h;

* Incomplete beta function Ix(a,b)

public static double betainc(double a, double b, double x) {
// Routine from Numerical Recipes in C
if (x < 0.0 II x > 1.0) {

throw new IllegalArgumentException("betainc: Illegal arg x=" + x);
}

double bt;
if (x == 0.0 II x == 1.0) {

bt = 0.0;

} else {
bt = gammaln(a+b)-gammaln(a)-gammaln(b)

+ a*Math.log(x)+b*Math.log(1.0-x);
bt = Math.exp(bt);

if (x < (a+1.0)/(a+b+2.0)) {
// Use continued fraction directly

34

return bt * betaContFrac(a,b,x)/a;
}else {

// Use continued fraction after making symmetry transformation
return 1.0 - bt * betaContFrac(b,a,i.O-x)/b;

C/ Continued fraction for incomplete beta
private static int BETACFMAXITER = 100;
private static double betaContFrac(double a, double b, double x)

// Routine from Numerical Recipes in C
double qab = a + b;

double qap = a + 1.0;

double qam = a - 1.0;

double c = 1.0;

double d = 1.0 - qab*x/qap;

if (Math.abs(d) < TINY) d = TINY;
d = 1.0/d;

double h = d;

int niter = 0;
double delta;
do f

++niter;
double m2 = 2.0 * niter;

double aa = nIter*(b-nIter)*x/((qam+m2)*(a+m2));
// One step (even one) of the recurrence
d = 1.0 + aa*d;

if (Math.abs(d) < TINY) d = TINY;
d = 1.0/d;

c = 1.0 + aa/c;

if (Math.abs(c) < TINY) c = TINY;
h *= d*c;

// One step (odd one) of the recurrence
aa = -(a+nIter)*(qab+nlter)*x/((a+m2)*(qap+m2));
d =1.0 + aa*d;
if (Math.abs(d) < TINY) d = TINY;
d = 1.0/d;
c = 1.0 + aa/c;

if (Math.abs(c) < TINY) c = TINY;
delta = d*c;

h *= delta;

if (niter >= BETACF-MAXITER) {
throw new RuntimeException("betaContFrac: No convergence");

}
} while (Math.abs(delta - 1.0) > tol);

return h;

}

35

